56 research outputs found

    DNA replication and the GINS complex: localization on extended chromatin fibers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The GINS complex is thought to be essential for the processes of initiation and elongation of DNA replication. This complex contains four subunits, one of which (Psf1) is proposed to bind to both chromatin and DNA replication-associated proteins. To date there have been no microscopic analyses to evaluate the chromatin distribution of this complex. Here, we show the organization of GINS complexes on extended chromatin fibers in relation to sites of DNA replication and replication-associated proteins.</p> <p>Results</p> <p>Using immunofluorescence microscopy we were able to visualize ORC1, ORC2, PCNA, and GINS complex proteins Psf1 and Psf2 bound to extended chromatin fibers. We were also able to detect these proteins concurrently with the visualization of tracks of recently replicated DNA where EdU, a thymidine analog, was incorporated. This allowed us to assess the chromatin association of proteins of interest in relation to the process of DNA replication. ORC and GINS proteins were found on chromatin fibers before replication could be detected. These proteins were also associated with newly replicated DNA in bead-like structures. Additionally, GINS proteins co-localized with PCNA at sites of active replication.</p> <p>Conclusion</p> <p>In agreement with its proposed role in the initiation of DNA replication, GINS proteins associated with chromatin near sites of ORC binding that were devoid of EdU (absence of DNA replication). The association of GINS proteins with PCNA was consistent with a role in the process of elongation. Additionally, the large size of our chromatin fibers (up to approximately 7 Mb) allowed for a more expansive analysis of the distance between active replicons than previously reported.</p

    Regional variability in peatland burning at mid-to high-latitudes during the Holocene

    Get PDF
    Northern peatlands store globally-important amounts of carbon in the form of partly decomposed plant detritus. Drying associated with climate and land-use change may lead to increased fire frequency and severity in peatlands and the rapid loss of carbon to the atmosphere. However, our understanding of the patterns and drivers of peatland burning on an appropriate decadal to millennial timescale relies heavily on individual site-based reconstructions. For the first time, we synthesise peatland macrocharcoal records from across North America, Europe, and Patagonia to reveal regional variation in peatland burning during the Holocene. We used an existing database of proximal sedimentary charcoal to represent regional burning trends in the wider landscape for each region. Long-term trends in peatland burning appear to be largely climate driven, with human activities likely having an increasing influence in the late Holocene. Warmer conditions during the Holocene Thermal Maximum (∼9–6 cal. ka BP) were associated with greater peatland burning in North America's Atlantic coast, southern Scandinavia and the Baltics, and Patagonia. Since the Little Ice Age, peatland burning has declined across North America and in some areas of Europe. This decline is mirrored by a decrease in wider landscape burning in some, but not all sub-regions, linked to fire-suppression policies, and landscape fragmentation caused by agricultural expansion. Peatlands demonstrate lower susceptibility to burning than the wider landscape in several instances, probably because of autogenic processes that maintain high levels of near-surface wetness even during drought. Nonetheless, widespread drying and degradation of peatlands, particularly in Europe, has likely increased their vulnerability to burning in recent centuries. Consequently, peatland restoration efforts are important to mitigate the risk of peatland fire under a changing climate. Finally, we make recommendations for future research to improve our understanding of the controls on peatland fires

    Epidemiologia do carcinoma basocelular

    Full text link

    Rapid Emergence and Evolution of Staphylococcus aureus Clones Harboring fusC-Containing Staphylococcal Cassette Chromosome Elements

    Get PDF
    The prevalence of fusidic acid (FA) resistance amongStaphylococcus aureusstrains in New Zealand (NZ) is among the highest reported globally, with a recent study describing a resistance rate of approximately 28%. Three FA-resistantS. aureusclones (ST5 MRSA, ST1 MSSA, and ST1 MRSA) have emerged over the past decade and now predominate in NZ, and in all three clones FA resistance is mediated by thefusCgene. In particular, ST5 MRSA has rapidly become the dominant MRSA clone in NZ, although the origin of FA-resistant ST5 MRSA has not been explored, and the genetic context offusCin FA-resistant NZ isolates is unknown. To better understand the rapid emergence of FA-resistantS. aureus, we used population-based comparative genomics to characterize a collection of FA-resistant and FA-susceptible isolates from NZ. FA-resistant NZ ST5 MRSA displayed minimal genetic diversity and represented a phylogenetically distinct clade within a global population model of clonal complex 5 (CC5)S. aureus In all lineages,fusCwas invariably located within staphylococcal cassette chromosome (SCC) elements, suggesting that SCC-mediated horizontal transfer is the primary mechanism offusCdissemination. The genotypic association offusCwithmecAhas important implications for the emergence of MRSA clones in populations with high usage of fusidic acid. In addition, we found thatfusCwas colocated with a recently described virulence factor (tirS) in dominant NZS. aureusclones, suggesting a fitness advantage. This study points to the likely molecular mechanisms responsible for the successful emergence and spread of FA-resistantS. aureus

    Topical Antibiotic Use Coselects for the Carriage of Mobile Genetic Elements Conferring Resistance to Unrelated Antimicrobials in Staphylococcus aureus

    Get PDF
    Topical antibiotics, such as mupirocin and fusidic acid, are commonly used in the prevention and treatment of skin infections, particularly those caused by staphylococci. However, the widespread use of these agents is associated with increased resistance to these agents, potentially limiting their efficacy. Of particular concern is the observation that resistance to topical antibiotics is often associated with multidrug resistance, suggesting that topical antibiotics may play a role in the emergence of multidrug-resistant (MDR) strains. New Zealand (NZ) has some of the highest globally recorded rates of topical antibiotic usage and resistance. Using a combination of Pacific Biosciences single-molecule real-time (SMRT) whole-genome sequencing, Illumina short-read sequencing, and Bayesian phylogenomic modeling on 118 new multilocus sequence type 1 (ST1) community Staphylococcus aureus isolates from New Zealand and 61 publically available international ST1 genome sequences, we demonstrate a strong correlation between the clinical introduction of topical antibiotics and the emergence of MDR ST1 S. aureus We also provide in vitro experimental evidence showing that exposure to topical antibiotics can lead to the rapid selection of MDR S. aureus isolates carrying plasmids that confer resistance to multiple unrelated antibiotics, from within a mixed population of competitor strains. These findings have important implications regarding the impact of the indiscriminate use of topical antibiotics

    Genomic epidemiology and antimicrobial resistance of Neisseria gonorrhoeae in New Zealand

    Get PDF
    Background: Antimicrobial-resistant Neisseria gonorrhoeae is a major threat to public health. No studies to date have examined the genomic epidemiology of gonorrhoea in the Western Pacific Region, where the incidence of gonorrhoea is particularly high. Methods: A population-level study of N. gonorrhoeae in New Zealand (October 2014 to May 2015). Comprehensive susceptibility testing and WGS data were obtained for 398 isolates. Relatedness was inferred using phylogenetic trees, and pairwise core SNPs. Mutations and genes known to be associated with resistance were identified, and correlated with phenotype. Results: Eleven clusters were identified. In six of these clusters, >25% of isolates were from females, while in eight of them, >15% of isolates were from females. Drug resistance was common; 98%, 32% and 68% of isolates were non-susceptible to penicillin, ciprofloxacin and tetracycline, respectively. Elevated MICs to extended-spectrum cephalosporins (ESCs) were observed in 3.5% of isolates (cefixime MICs ≥ 0.12 mg/L, ceftriaxone MICs ≥ 0.06 mg/L). Only nine isolates had penA XXXIV genotypes, three of which had decreased susceptibility to ESCs (MIC = 0.12 mg/L). Azithromycin non-susceptibility was identified in 43 isolates (10.8%); two of these isolates had 23S mutations (C2611T, 4/4 alleles), while all had mutations in mtrR or its promoter. Conclusions: The high proportion of females in clusters suggests transmission is not exclusively among MSM in New Zealand; re-assessment of risk factors for transmission may be warranted in this context. As elevated MICs of ESCs and/or azithromycin were found in closely related strains, targeted public health interventions to halt transmission are urgently needed

    A phylogenomic framework for assessing the global emergence and evolution of clonal complex 398 methicillin-resistant Staphylococcus aureus

    Get PDF
    Distinct clones of methicillin-resistant Staphylococcus aureus (MRSA) have emerged as important causes of infection in individuals who have exposure to livestock (livestock-associated MRSA; LA-MRSA). Clonal complex 398 (CC398) is the most prevalent LA-MRSA clone, and has been reported from several geographical settings, including Europe, the Americas and Asia. To understand the factors contributing to the global dissemination of this clone, we analysed CC398 MRSA isolates from New Zealand (NZ), a geographically isolated country with an economy strongly dependent on livestock farming. We supplemented the NZ CC398 MRSA collection with global datasets of CC398 MRSA and CC398 methicillin-susceptible S. aureus. Here, we demonstrate multiple sporadic incursions of CC398 MRSA into NZ, as well as recent importation and spread of a swine-associated clade related to the European LA-MRSA lineage. Within a larger global phylogenomic framework, Bayesian modelling suggested that this NZ clade emerged in the late 2000s, with a probable origin in swine from Western Europe. Elucidating the factors responsible for the incursion and spread of LA-MRSA in geographically distant regions, such as NZ, provides important insights into global pathways of S. aureus transmission, and will inform strategies to control importation and spread

    Genomic Analysis of Multiresistant Staphylococcus capitis Associated with Neonatal Sepsis

    Get PDF
    Coagulase-negative staphylococci (CoNS), such as Staphylococcus capitis, are major causes of bloodstream infections in neonatal intensive care units (NICUs). Recently, a distinct clone of S. capitis (designated S. capitis NRCS-A) has emerged as an important pathogen in NICUs internationally. Here, 122 S. capitis isolates from New Zealand (NZ) underwent whole-genome sequencing (WGS), and these data were supplemented with publicly available S. capitis sequence reads. Phylogenetic and comparative genomic analyses were performed, as were phenotypic assessments of antimicrobial resistance, biofilm formation, and plasmid segregational stability on representative isolates. A distinct lineage of S. capitis was identified in NZ associated with neonates and the NICU environment. Isolates from this lineage produced increased levels of biofilm, displayed higher levels of tolerance to chlorhexidine, and were multidrug resistant. Although similar to globally circulating NICU-associated S. capitis strains at a core-genome level, NZ NICU S. capitis isolates carried a novel stably maintained multidrug-resistant plasmid that was not present in non-NICU isolates. Neonatal blood culture isolates were indistinguishable from environmental S. capitis isolates found on fomites, such as stethoscopes and neonatal incubators, but were generally distinct from those isolates carried by NICU staff. This work implicates the NICU environment as a potential reservoir for neonatal sepsis caused by S. capitis and highlights the capacity of genomics-based tracking and surveillance to inform future hospital infection control practices aimed at containing the spread of this important neonatal pathogen
    corecore